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Metachronal waves for deterministic switching two-state oscillators with hydrodynamic interaction
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We employ a model system, calledwers as a generic physical framework to define the problem of the
coordinated motion of ciligthe metachronal wayeas a far from equilibrium process. Rowers are active
(two-state oscillators in a low Reynolds number fluid, and interact solely through the forces of hydrodynamic
origin. In this work, we consider the case of fully deterministic dynamics, find analytical solutions of the
equation of motion in the long-wavelengditontinuum limit, and investigate numerically the short-wavelength
limit. We prove the existence of metachronal waves below a characteristic wavelength. Such waves are
unstable and become stable only if the sign of the coupling is reversed. We also find that with normal
hydrodynamic interaction, the metachronal pattern has the form of stable trains of traveling wave packets
sustained by the onset of anti-coordinated beating of consecutive rowers.
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I. INTRODUCTION infinite degrees of freedom of an inextensible linelike object,
its bending elasticity, and its interaction with the fliglen-
Cilia are hairlike extroflections of the cell membrane der body hydrodynamigsplus an active force, which can be
found in a variety of species from protists to humans, whichmposed based on physical observations or treated starting
contain active elemenisnolecular motors, filamentsacting  from the “microscopic” internal active degrees of freedom
as an internal drivd1]. Because of their size and typical [12,13. The model we present he(8ec. I) is extremely
velocities, the motion of cilia is in the low Reynolds number simplified and economic in degrees of freedom. It is intended
regime. Ciliary motion can be divided into two stages, calledto be treatable analytically. The cilia are represented by point
powerandrecoverystrokes. The difference between the two particles, two-state active oscillators which we aalvers
is that in the power stroke a higher portion of the surface ofThe active force is inspired by the switch mechanism intro-
the cilium pushes against the fluid compared to the recoverguced by Gueron and Levit-Gurevids]. Planar or linear
stroke so that, as in the breast stroke of human swimmingarrays of interacting rowers are considered. In a previous
the two effective viscous drags are different, and the filamentvork, we used the same model to study the role of noise
is able to propel the fluid2—4]. Cilia normally appear in [14], proving that if the switch mechanism of single rowers
arrays, and show coordinated wavelike motion, referred to ais purely stochastic the hydrodynamic interaction generates
metachronal waveThe behavior of the metachronal wave is metachronal waves which are statistically frustrated by the
thought to be strictly linked to the hydrodynamic interactionspresence of random fluctuations, but can be stabilized by the
between cilig5,6,8,7. The question of how these collective presence of a short ranged coupling of the internal states, for
motions are generated, from the interplay between the inteexample of chemical origin. An alternative scenario pro-
nal active degrees of freedom and the external interaction, isosed by us was that the presence of a coupling between the
still open. The scope of this work is to investigate this prob-position and transition frequencies of the single rower would
lem, using a simple deterministic model containing very fewlead to wavelike solutions. In this work, we would like to
parameters, consistent with experimental observations anglursue this second possibility, in the limiting case where the
previous more detailed modeling, which can be easily simudynamics for the switch is governed deterministically by the
lated and solved analytically in the limit of large wave- configuration of the rower, as in the geometric switch of
lengths. Gueron and Levit-Gurevich.
Modeling of cilia[9—11] normally requires including the After an introduction of the modéBec. ), we devote the
main body of the papgiSec. Il)) to the onset of metachronal
coordination. The discussion is divided into two parts. In the
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FIG. 1. Cilia and rowers.
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organize in patterns in which nearest neighbor particles bea 1 g 05 % R 1

in antiphase, and propagate trains of wave packets with typi-

cal wavelength of a few particles. Only with an effectively g5 2 PotentiaN(f, o) for k,=0 (+) andk,=1 (O). The

attractive interaction do long-wavelength wavelike solutionsyotted lines indicater= — 1, the solid linesr=1. The dimension-

appear. less quantityf represents the displacement of the center of mass of
the cilium from its equilibrium position.

II. THE MODEL: ROWERS AND EVOLUTION OF THE

INTERNAL STATE the collective motion of molecular motors to a single dy-

In the model we adopt, the movement of a single cilium isnamic variable. We choose to maintain this variable discrete,

reduced to that of a low Reynolds number rower that maxiJustified by the experimental observation that the motion of a

mizes the effective drag in its active phagmwer strok cilium is divided into two distinct phases and by previous,
and minimizes it in the passive, recovery stroke. More pre/moreé detailed modeling that suggested this picféie

cisely, a rower is described by two degrees of freedom, of |N€ €volution of a rower internal state can be modeled
which the first,f, is translational and continuous and repre-9€nerically as a stochastic proc¢id], defined by the tran-

sents adimensionlessdisplacement from a reference posi- sition frequencies betv_vgen states. H_ere we analy_ze a limiting
tion, rescaled with the characteristic amplitude of ciliary mo-caS€ where the transition frequencies depend singularly on
tion in the system of intere€Fig. 1). It can be thought of as the configuration in a way that reduces the dynamics to a
the displacement of the center of mass of the filament fronfl€terministic one. Essentially, a rower contains a switch that
an equilibrium position. The second= 1, is discrete and alter_s mstantgneously its internal stat_e when a_part|cular I_|m|t
labels the internal state of the object, active or passive. Thgonfiguration is reached. The dynamics of the internal switch
rowing direction is fixed, while the orientation can in general'S €ntirely local, in the sense that there is no interaction of
be left open, to approach the problem of symmetry breakiné’hem'cal origin bgtween the nearby rowers. With these
in the generation of fluid flow[14]. The two states carry Cchoices, the evolution of,, may be represented by the fol-
different effective drags, =1+ eo (with €>0) to the fluid, 0Wing equation containing a Dira distribution:
corresponding to different surface impacts of the ro{aé
ferent shapes of the filamenin the two phases, together
with different potentials(free energy landscape¥(f,o), dorn(t) =—2sgiff (t)]‘%
that generically describe different active or relaxation forces at n dt
felt by the cilium. This is the implementation of the so-called
scallop theoreni3] at this crude level of description, and
makes it possible for a rower to generate a net flow in thavhere = s are the switch points in correspondence of which
fluid. There is no interaction between rowers other than thehe discrete internal state is inverted. These parameters set
force propagated by the presence of the fluid. This force ishe amplitude of oscillation of a single particle and determine
modeled by the Oseen tensor for low Reynolds numbeits window of motion relatively to the driving potentials of
flows, appropriate in the case of cilid]. The array of ciliais the two stategFig. 2).
modeled as a linear or planar lattice of rowers labeled by the Let us now turn to the evolution of the rower displace-
index n, and the configurations are specified iy o, . ment and the hydrodynamics. Considering the fact that an
This approach to the system contains a radical simplificaeverdamped motion follows the maximum slope toward the
tion in the degrees of freedom of the object, a string withminimum free energy and that we consider no metastability,
infinite degrees of freedom, and of the active drive, generthere are generically two possible qualitative choices for the
ated by the collective behavior of many molecular motorslocal conformation of the potentials in the two internal states.
This reduction enables us to carry an analytical study. At oulThese can be linear, provided the system is far from a mini-
level of description, the substitution of cilia with point par- mum, or quadratic if it is close. Therefore, rescaling all the
ticles does not change qualitatively the interaction induceaonstants that are not essential to our discusgstokes co-
by the fluid. However, it is a more delicate issue to reduceefficient, prefactors we write

o(fn(t) —san(t)), (1)
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, 1 lattice sites, assuming that the oscillations are small com-
V(f,0)= 5~ (K;f—0)"= 5 —, pared to this distance. Most of our simulations, though, were
7 7 carried with the fullQ).

where the parametds, €[0,1] determines the shape of the lIl. METACHRONAL COORDINATION
potential(Fig. 2). For consistency reasons, here 1.

Thermodynamma_lly, we have the_fqllowmg. The scope of this section is to establish whether hydrody-

(1) If the switch is close to a minimum of the energy, ,amjc interactions are sufficient to rephase the rowers in ab-
K,=1 and we take a quadratic potential, the rower has timgence of a more direct coupling of chemical or mechanical
to dissipate completely its excess energy to the environmenfiiqin The oscillatory motion of a single rower in an array is
before it reaches the switch. The dynamics is a cyclical répg aranteed by the structure of its equation of motion. A mean
etition of such relaxation processes. _ field description of the array can be carried out considering

(2) If the switch is far from a minimum energy configu- {he overall effect of the velocity field generated on one rower
ration, k,—0 and the potential is linear. The switching pro- by all the others. This procedure is outlined in Appendix A,
cess is faster than the thermalization time of the rower, which,4 |eads to the main result that a collection of rowers can

does not have time to dissipate all its energy. In this case, Ebtenerate a macroscopic flow ##0, and that, provided
the switch the rower must undergo a collisionlike processyere s no intrinsic orientation in the beating mechanism,

which conserves the qlissipation rate and the magnitude cgymmetry will be broken. However, in a description that
the macroscopic velocity.

) . ) . goes beyond the mean field, nothing can be said about the
The qon3|derat|ons above refer genencglly to th_e aCt!Vebeating time, which can in general vary with the dynamics,
mechanism of model rowers, but leave aside the link withyg that the question can be restated as whether this variability
real C|'I|a. If one wants to give this drive a microscopic inter- i, 1o beating time is stabilized or disrupted by the hydrody-
pretation, it has to be in terms of collective motions of the 4 mic interactions. The problem is hard to approach analyti-

internal motors and elastic degrees of freedom of the ciliumca”y due to the discontinuous nature of the switchnd the
For example, in the linear potential scenario one can imagingqnjinearities. However, the continuous limit of the model,

that motors attach/detach slowly generating a constant forc?fvhich describes the long-wavelength behavior of the system,

while in the nonlinear one they attach simultaneously, giving.a pe approached analytically. The resuits obtained in this

the cilium a well-defined minimum energy curvature, andway can then be compared with the numerical study of the

th.ey detach coIIect.iveI)-/ gfter reaching it. In what follows, we jiscrete case.

will setk,=k for simplicity. , From the point of view of solving the equation of motion,
The equation of motion for the rowers has to contain the; e has to investigate the following.

hydrodynamic interaction. We think of rowers as sources for (1) The existence of wavelike solutions. We define

the vel(_)city fiel_d and noF as poundary gonditions, which atachronal wave motions of the Kifig(t) = f(t = rx,), and
means introducing &nondimensionalcoupling constantr e define “simple” metachronal waves as the ones for which
between the fluid and the rowers as a substitute for the 9€4~(and thuso) is a periodic function.

metric constraints is proportional to the Reynolds number, - o) The stability and attractivity properties of these solu-
or to the inverse of the kinematic viscosity. To avoid com-q- o
plications, we do not take into account additional boundary (3 Thejr statistical weight in a macroscopic description of
conditions, such as walls. As the systemisin a low Reynoldg, system on large time scales. As one cannot estaalish
and Strouhal number reginfd], it is possible to use the i its initial conditions, the metachronal solutions will be
regularized Oseen tensfit6] to eliminate the velocity field  gjgnificant if the phase space volume of the initial conditions
and obtain an evolution equation for the sole rowers degre€gey attract is nonzero, and the relaxation time scales do not
of freedom[14]: exceed a cutoff defined by the lifetime of the system.

In what follows, we will be mainly concerned with the

df (1) =V (1), 0n(D)] first two points. The third point will be approached, in gen-
cr;t =[1+eay(t)] r:?f L eral, numerically for systems of a few roweishort wave-
n lengths.
=V (fn(t),om(1))]
+ “n;n Q[n,m] of - @ A. Metachronal pattern in the large wavelength limit:

Continuous model

) ) We will show that in the continuum limit of equation of
wheree is the parameter that represents the difference bzwotion (2), it is possible to find simple metachronal wave
tween the effective viscous drags in the two states andqsions and study their stability analytically. We can take
Qn,m]=(1/r nm)xx(1 +Tanfnm) IS the Oseen tensor pro- the continuous limit analyzing selectively metachronal solu-
jected on the beating directior of the rowers. Strictly tions whose wavelength is large compared to the spacing
speaking,Q[n,m] depends onf,,f,. However, to ease between rowers. Thef,(t)=7(x,,t) becomes the continu-
things in an analytical calculation, we approximated it with aous fieldf(x,t) and we can rewrite the hydrodynamic inter-
quantity that depends only on the relative distance of thection tenso)[n,m] as (—V2+q?) "1, where we incorpo-
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rate also the possibility of screening with inverse screening ' ' ' ' ' ' '
length g. With one inversion of this operator, the evolution
equation(2) for the continuoug can be written as

2_y2 ﬁ _ — —
(%= V2)| =+ (1+e0) (kf~0)| = —a(ki-0). (3

f(y)

The Laplacian in the above expression is one dimensional

along the fixed direction of beating. We look for planar
metachronal wave solutions with the ansatzf(t— 7x), so
that we can restrict ourselves to a{1)-dimensional prob-
lem. The transverse hydrodynamic interactions are irrelevan
as the rowers are constrained to beat in one dimension, an
the anisotropic terms can be absorbed in the prefactor of the
interaction tensor. Calling=t— 7x, we can assume, without
loss of generality, thag=0 is the coordinate of a wave front,  FIG. 3. Analytical solution of the continuum equati¢®) com-
where the switchr has a jump. This translates into the con- puted for the case=0.8, p=0.01,k=1. The fixed point values of
dition the parameters in this case afe.=—0.435B.=—1.456. All
guantities are dimensionless. The abscigsd — 7x represents the
o=0(—y)—0(y), wave front. It is rescaled to the characteristic beating time of the
single oscillator(see Appendix A *s are the switching pointgy
where 6 is the Heaviside step function. The local displace-is—essentially—the Reynolds number and the nonlinearity in-
mentf can be decomposed into the sum of power stroke angex of the potentia(see text A andB are the coefficients used in

recovery stroke partd,, 8(—y)+f_@(y), and this implies writing the wave functiorf(y); the subscriptst refer to consecu-
that tive switches(see Appendix R

of=f,0(—-y)—f_6(y). and can be simplified by restricting to the case0. A nec-
essary condition to fing("™ is that s<1, which gives a good

With this procedure, one obtains two linear third-order dif-consistency test.
ferential equations fof _ andf, , together with four joining (1) For quadratic potentialsk(>0) the, qualitatively rel-
conditions forf. and their derivatives in correspondence evant parameter is=(q+ a)/ 7. Fixing s, there is a critical
with the jumps ofo. Metachronal solutions can be con- value p, such that forp>p, there exists no solution. This
structed starting from the initial conditioyf®=0 and gen- sets an upper critical wavelength, for the metachronal
erating a succession of wave-front coordinatesyaves. For &p<p,, a fixed point exists, and the stability
y®,y®@, .y, imposing the joining conditions above on analysis gives a marginally stable saddle point in the planes
the solutions of the third-order differential equations for. of coefficients A ,B..). In other words, there is one lir@
The iteration of this process, starting from the initial condi-region of zero measuref stability in this plane, with run-
tions for f.. and its first and second derivatives, or equiva-away hyperbolic trajectories around it. We report this case in
lently on the vector of thétwo at the mostindependent Fig. 4 as an example. Finally, fgg<O the wavelike solu-
arbitrary constantsA.. ,B..) of the solution of the differen- tions are always stable. However, this last condition implies
tial equations, generates a flux in phase space, described by<0, therefore an effective “attractivity” of the hydrody-
an affine transformatiortFig. 3). The existence of a fixed namic interactions. We will discuss below two cases that
point of the successiond” ,B{™) and its attractive proper- could lead to this situation.
ties determine the nature and stability of the constructed (2) In the casek=0 (linear potentials the solution al-
metachronal wave. At every iteration, ty&) must satisfy ways exists. Stability analysis gives solutions that are always
the relationf(y(W)=+s. Note that despite the fact that ev- unstable(two eigenvalues>1) for p>0 and stable fop
ery step involves linear operations, a strong nonlinearity is<0.
introduced by the inversion foy(" of the solutions of the In both cases, we can conclude that metachronal solutions
differential equations. It is also important to stress that theat long wavelengths are unstable unlpss0, and the inter-
solutions constructed in this way are, in general, not periaction becomes attractive. We would like to spend a few
odic, and may have a domain of existence which is boundediords on the possible physical meaning of this change in
in'y, as after a number of iterations it could be impossible tosign, with an effectively attractive interaction. One first con-
invert for y(™. More details on these calculations for the sideration is that interaction between colloidal objects can be
exemplifying cas&k=1,e=0 are reported in Appendix B. more complicated than how we represent it, in the presence

Our results can be summarized as follows. We find thatpf hydrodynamic effects or charge. For example, it has been
from the point of view of the existence and stability of speculated that the presence of a wall in combination with a
metachronal solutiong, plays no qualitative role, so that the surface charge, all neglected in our model, leads to effec-
problems of flow generation and synchronization can beively attractive potentials between colloids of like charges
separated. For this reason, the discussion is independent of 19]. Lubrication forces form another possibility, provided
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Fixed Point Stability in the phase space. One possibility is that these lie in the
065 ' - - ' ' shorter-wavelength region, which is overlooked by the con-
tinuous model. This motivates the numerical analysis of the
following sections.

B. Numerical simulations with many rowers

A confirmation of these results, and more insight on the
behavior of the system, comes from numerical simulations of
linear and two-dimensional arrays of maf®0—250 rowers.
These were run starting from random initial conditions, with
nearest neighbor Oseen-like interactions, the simplified inter-
action tensor which depends on the lattice distance and the
full Q[ n,m], robustly showing the same phenomenology in
5 045 04 035 03 025 oz all cases. In particular, for linear arrays wib»0, we have

A. the following.

FIG. 4. Stability analysis fos=0.3, p=0.05,k=1. The fixed (1) For p>0, the relaxed solutions look like trains of
point values of the parameters ake = =0.337B. = +0.865. The  traveling wave packets where nearby rowers show anticoor-
fixed point is marked with a black square, and the lines with arrowslinated motion. In the patterns observed in the simulations,
indicate the direction of evolution of different initial conditions, the packets have typically a characteristic length of the order
showing that the fixed point is marginally stable. The trajectoriesOof ten particles. Their traveling direction coincides almost
are obtained by iterating the transformation dh.(,B.) starting  always with the beating direction of single rowers.
from different initial conditions. The lines reported are Bezier inter-  (2) For p<O long-wavelength traveling solutions appear.
polations of thesédiscreté transformations. These always have a wavelength that is exactly the size of

the array. For every solution of this kind traveling in one
that cilia are able to get sufficiently close to each other. Fodirection, there is another one in the opposite one, leading to
rowers, this last condition is contrary to the assumption ofmirror symmetric standing waves. The same solutions are
small oscillations in the theoretical calculation but can befound if « is kept positive, and a nearest neighbor attractive
tested through simulations with the full Oseen tensor. Cominteraction is added.
ing back to the more orthodox cape-0, the results above This is exemplified in Fig. 5. For linear arrays with
show that in the continuous limit, simple metachronal waves=0, wavelike solutions appear only fop<0. Two-
(with nearest neighbor rowers in phasist for all wave- dimensional arrays show the same qualitative behavior. This
lengths(below a characteristic one, fér#0), but they are makes the wave patterns propagate in directions that are dif-
(marginally fork#0) unstable. These results are not suffi-ferent from the beating direction of the roweronsimplec-
cient to establish, in general, the statistical behavior ofic, in the language of metachronal wayes
metachronal waves, as the hypotheses adopted here reduceWe can give a heuristic argument based on the switch
the analysis to a particular class of solutions and the locamnechanism to account for this antiphase coordination. Let us
region of the phase space that surrounds them. For negativeconsider three consecutive rowexsY,Z, and assume that
only we can conclude that wavelike solutions attract all thethey are in phase. Immediately aft& reaches the+1
initial conditions. In the other cases, where the solutions arswitch, it feels a strong negative force due to the change in
not attractive, we have to look for other basins of attractionghe potential, which is propagated mainlyX@and much less
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FIG. 5. Metachronal solutions from numerical simulations of linear arrays of rowers interacting with the full Oseen tensor. The distance

between successive rowers is 2 in our rescaled unitsean@.25. (a) and (b): casep>0. a=0.4k=1,150 rowers. Ina), a part of the

configurationf,, as a function of the rower index is shown. The dashed line shows the actual configuration, while the solid one, obtained by

connecting the points relative to odd rowers, outlines the shape of the wave gatkepresents the time evolutidift) of the 40th rower
of this array(time is rescaled to the characteristic beating time of the single oscjllétr casep<0. o= —0.1k=1,200 rowers. The
configurationf, shows a long-wavelength metachronal wave. The part of the configuratior fifd0 is mirror symmetric, due to the same
pattern traveling in the opposite direction.
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1

05

FIG. 6. (Color onling Poincaremap for the cask=0, three rowers, periodic boundary conditiohsandf are dimensionless quantities
which represent the positions of rowers 1 and 3 when rower 1 reaches the switch pashkiere, e=0.02 ands=0.9. The allowed
configurations are confined in the square rediers,s| X[ —s,s]. However, to increase clarity, the figures were divided into four regions,
corresponding to the different values of the two switches, which were “folded outside,” so that the axes correspond to the actual configu-
ration of the rowers after a mirror reflection dependent on the state of the switehes=0.1. (b) «=0.01.

to Z. ProvidedY was going toward the same switch, it will be can be either chaotic or quasiperiodic if the potentials are
slowed down, and therefore de-phased with respeXt teet  linear (k=0), as can be seen in Fig. 6. The phase space
us imagine now thak,Y,Z are in antiphase and reaches volume of the quasiperiodic region delimited by the concen-
the + 1 switch. Now the force felt by (and much less b¥) tric loops is, therefore, a measure of the statistical weight of
will be driving it toward the —1 switch, reinforcing the quasiperiodic solutions. The volume of this region decreases
dephasing. As a result, the antiphase beating betweand  \ith increasinga. The casek#0 is somewhat different.

Y is more stable than the coordinated motion. According tQ4ere, there is no chaos, and the stable tori become attractors
this argument, this will be the case in all the instances wherg, 5 fixed point of the parameter spapeig. 7(&)]. This

the influence of nearest neighbors is stronger than that of thﬁ]eans, in principle, that all the initial conditions lead to pat-

far away ones. More fqrmally, one can find a reason for thI%ern formation. Therefore, the relevant parameter becomes
behavior in the analytical solution of the continuum equa-

. : . . ; . the relaxation time. This diverges &s-0 as a power law
tion. Configurations where rowers, interacting with the nor- ith exponentb=0.85 and asa—0 with exponentc
mal Oseen tensor, have opposite phase are overlooked by the P ' a—r eXp .
continuum limit. However, roughly speaking, these configu—zo'm' The curvatqre of the' potentlal, Wh'Ch as we d.'s'
rations lead effectively to a change of sign®fin the con- cussed has to do with the activity of the microscopic a_ctlve
tinuum limit equation, as one can easily see by imposingfegr_ee_s of freedom_, seems theref_ore to be important in de-
fover= — fogq i EQ. (2). Therefore, one can think that the t€rmining the organization properties of the system. On the
stable waves found fqp<0 in the continuum model have a other hand, the phenomenology observed for different values
trace of this antiphase behavior. of « is qualitatively consistent what what observed experi-
mentally for the arrays of cilia beating in fluids with varying

C. Stability of the metachronal wave at short wavelengths viscosity[7,8].

To ana]yze the system at shorter wavelengths, we ran nu- IV. OVERVIEW AND CONCLUSIONS
merical simulations of linear arrays of a few rowers with
periodic boundary conditions, choosing to truncate the inter- We have presented a simple model system of two-state
action to nearest neighbors. We interpret the boundary codew Reynolds number oscillators called rowers as a generic
dition as a constraint on the wavelength of the resulting wavdéramework for the problem of cooperation of cilia. The dy-
patterns. For up to four rowers, we analyzed the system ustamics adopted in this work, specified by setting the transi-
ing Poincaremaps. This study leads to more general considtion rates between the two potentials, is entirely determinis-
erations on the statistical weight of metachronal solutionstic, determined by a switch mechanism coupled to the
The maps are obtained by graphing the positions of two roweonfiguration. We solved analytically for wavelike solutions
ers when a reference one reaches the switch over marifie continuum, long-wavelength limit of the equation of mo-
cycles of the motion and for different initial conditions. If the tion for an array of rowers with hydrodynamic interaction
resulting graph is, or converges to, a single point, the motiomnd we analyzed the stability of the solutions, confronting
is coordinated. If it is a closed orbit, the coordination is qua-with the results from numerical simulations. Finally, we ana-
siperiodic, which means that the motion, in general, does ndyzed through Poincarenaps the phase space dynamics of
look like a traveling wave. Finally, if the resulting graph is a systems of a few rowers, to study their behavior at short
random scatter plot, the motion is chaotic. Indeed, the systemwavelengths.
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proposed in our previous work. The relevant parameters in
our discussion are the stiffness of the potenkiadnd the
hydrodynamic interaction coupling strength The first is
related to the internal active degrees of freedom, which are
hard to access experimentally, while the second can be used
for a qualitative comparison of our results with experiments
where the arrays of cilia are observed beating in fluids with
varying viscosity[7,8]. One other question is the relation
with more detailed models of cilia and their internal drive, in
particular with the geometric switch model of Gueron and
co-workerg5,6]. Rowers, with their few degrees of freedom,
constitute a system much more under control than filaments
to test. We can conclude that generically simple hydrody-
namic interaction does not synchronize but antisynchronizes
nearest neighbor rowers, so that, if flamentous objects are to
be synchronized by a similar mechanism, an extoabe
found ingredient is needed.
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FIG. 7. (Color onling (a) Poincaremaps fork+ 0, three rowers, APPENDIX A: MEAN FIELD APPROACH, SYMMETRY

€=0.02. Left:=0.01 attracting trajectories for different values of BREAKING
k. A, k=0.15; O, k=0.2; O, k=0.3; ¢, k=0.4. Right: different
initial conditions fork=1. (b) Log-log plot of the(rescaled relax- It is possible to estimate the magnitude of the character-

ation time as a function df for «=0.01 (O) anda=0.1(O). The istic beating times and the macroscopic speed generated on
power-law fits(solid lineg yield an exponent of 0.85(c) Relax-  the fluid without having to solve explicitly the equations of
ation time as a function at for k=0.3. The power-law fit gives the motion, using simple self-consistency consideratipb4].
exponent 0.74. This is done by writing the equations of moti¢h) and (2)
for a single rower in a constant external effective velocity
Our most important result is that metachronal patterns exfield v along its beating direction and assuming that this

ist at all wavelengthsbelow a characteristic one, fdt  velocity is generated by the effect of the surrounding rowers.
#0), but long-wavelength solutions afenarginally for k Equation(2) then looks then like

#0) unstable. The stable patterns have the form of consecu-

tive wave packets where nearest neighbor oscillators are in dfy(t)

antiphase, propagated with constant speed, with a character- T:[“' eoo(t)]

istic length of a few rowers. We showed that the statistical

weight of these solutions can be determined numerically byvhere we have labeled conventionally with the index O the

imposing an upper cutoff on the wavelength of the patternrower around which we do the self-consistent calculation. It

Only in the presence of a reversed coupling constant cais then straightforward to calculate the beating tirhesor

long-wavelength metachronal solutions be stable. We prothis single rower, defined as the times required to go from

posed two possible physical reasons for this reversal in sign-s to +s and back, respectively:

Deterministic switching rowers, as two-state oscillators,

show a rich and an unusual phenomenology, of which we

could explore a number of aspects. Their behavior is in many

ways opposite to our usual notion of oscillations, starting

from the fact that no normal modes can be defined, but the

oscillators self-tune to a chosen frequency determined by the

characteristic relaxation times in the two states, much as in

the systems close to a Hopf bifurcatipts]. These quantities can be used to determine self-consistently
Comparing the behavior of our abstract entities with thatthe absolute value of the “macroscopic” fluid velocity,

of real or model cilia, the first puzzling question seems to lietaking into account the average force exerted by the single

in the antiphase motion. As discussed, a solution of thisower on the fluid in one cycle,

could lie in a short ranged interaction with a different origin.

Lubrication forces form one good candidate for this, as real EJT_ V(f,0) dt

cilia can be really close to each other. Also, a short ranged TJo of ’

synchronization between the switches of chemical origin

could lead to the same result, consistently with the scenariwhere the total period =t +t_ depends ow. Therefore,

[ =V(fo(t),00(1))] N
afo v

(1+ €)(1+ks)+v
(1+e)(1—ks) +v

t,=[k(1+€)] n

(1-—€)(1—ks)—v

t-=[k(1- 1N\ = ke =

Usc—

aZ QO,n
n#0
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1 . whered is the Heaviside step function afid =f .. (y). Ana-
08 _ < log expressions hold for the transitionl— 1. The decom-
) e positions above generate two linear ordinary differential
0.6 _ < equations forf . :
e
04 % 74t —pf.=%p (B5)
7
0.2 P < with p=a/7?. Moreover, the same conditior(82), (B3),
(B4), and their derivatives can be substituted in H1l),
0.2 O~4v 0.6 08 1 obtaining an expression containing termsédgty), 4(y),

and its derivatives. Equating all the terms to zero, one ob-
FIG. 8. Self-consistent velocity calculation. The right-hand sidetains three joining conditions. That is,
(solid line) and the left hand sidédashed ling of Eq. (Al) are
plotted as a function ob in the graph above. The intersection (f4 =T )] switer=0, (B6)
between the two lines yields,.. The values of the parameters for
the curves shown ar&=0.8,€=0.25,5=0.8, and aZ .oy

=0.2. With these values;;=0.365 in nondimensional units. (fi— f/—)|switch:§v (B7)
1 t_ n n 4
Use™ ~ T ar;o Qonllvs 1+e+1T6 +4es|. (f+_f7)|switch:_§_ (B8)
(AL)

Here, and more generally in the case0, the two equations
In this expression, the summed hydrodynamic propagatofB5) are the same with the identificationf _=f,_. The
simply plays the role of a multiplicative constant, ande-  solution of Eq.(B5) is easily obtainedf..==*1 is always a
termines the self-consistent value for the velodige Fig. particular solution, and one has to solve the characteristic
8). Fore=0, vs=0, and the scallop theorem is found again equationz®+z?=p. This admits three real solutions for 0
in the description of a collection of rowers. The same argu-<p<p, and one fop<0 andp>p, p=4/27. We will ana-

ment yielding a nonzero self-consistent velocity can be €Xfyze in detail here the case with three solutions z,
tended to the case of one—or a collection of—rower whose_ 2,,23), With z;,2,,25>0 . In this situation

rowing direction is not fixed. This is obtained by taking re-
flection symmetric potentials/(f,o)=V(—f,0), one of fo(y)=*(1+A.e W+B.e +C. e%).
which is with a single minimum fof =0, the other with a
double well. A thermal noise needs to be added for the probThe constanC. can be eliminated by using the condition
lem to be well posed. Rowers are able to break spontand-.(0)= s, meaning that after the first jump the rower is
ously the symmetry to generate a flow in the flliidf]. For  located at the switch. The next step is to evolve this solution
real cilia, the problem of symmetry breaking can be relevanup to a certairy.. where the next switching event will take
in the context of generation of left-right asymmetry throughplace, imposing that
nodal flow in vertebrate embryd47].

fi(ys)==%s. (B9)

APPENDIX B: EXAMPLE OF EXPLICIT SOLUTION OF

y- IS obtained by inverting this last expression and has to
THE CONTINUOUS MODEL AND ITS STABILITY

satisfy the joining condition$B8) for the next “piece.” For
We will solve Eq.(3) analytically with the ansatd  €xample, supposing we start from state 1,
=f(x—rt) on the solution. For simplicity, we can restrict 5
ourselves to the cade=1, q=0, €=0, as the general case f —§(0)= =
’ e : Ly+)—f2(0)
carries no further conceptual complication. Calligg=x 3
—7t, the equation reads

n n 4
L Ly =11 0)=—3.

This gives a linear transformatio\( ,B.)—(A_,B_). A
—2(f"+ ")+ a(f— o)+ 20" =0, (1)  complete solution can be constructed by iterating this proce-
dure. This solution is, in general, nonperiodic, yas may
where prime indicates derivatives with respectytoFor a  Vary at every step and also cease to exist. The equations that
transition of & from 1 to —1 at the wave fronty=0, the determiney" andy™ at thenth step can be written as

right joining conditions are, as already discussed, ") ) ) ™) ")
AY'H(13(Y%") + B Hg5(Yy’) = (1+5)E3(yL’) +(1—s9)

o= 9(_)/)_ a(y)r (BZ) :0, (BlO)
f=f o0(—y)+f_o(y), (B3)  where we used the notation
of=f,0(-y)—T_06(y), (B4) Hig(y)=e #V—e %, =12,

021908-8
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Ei(y)=e %, =12, Ejzy=e %

— Wl
A= —————,
The joining conditions for step are l+e 2y
ALTD=Ey () AR +wy, (B11)
B2
B V=E,p(y)BD +w,, Clte @

where w,;,w, are rational functions of the solutions _
21,25,2Z3. The equation forly admits solution a only i8<1, and, for

A simple (periodig metachronal solution exists when the any given value of, if p is lower than the critical valug,
transformation has a fixed point, which can be imposed by p introduced in the paper, which can be found numerically.
setting the equality betweeh"" ) andA{Y. This wave is This sets a maximal wavelength, for the metachronal
characterized by a unique, =y_=y solution of wave. The stability of the solution can be evaluated by lin-

earizing the flow, starting from the poini¢+ 5A,B+ 6B) in

1 — W3 = — parameter space, inverting E@®10) for; and calculating
1+E,(y) Hagy)+ 1+E,(y) Hg(y) = (1+S)Es(y) the total variation §A, 5B) from Eq.(B11). In this case, this
yields one eigenvalue lower than 1 and one higher, corre-
+(1-s)=0, sponding to a marginally stable fixed point. The procedure

. . outlined in this appendix can be carried out more in general,
and by coefficientA_=A,=A andB_=B_, =B given by  leading to the results discussed in the body of the paper.
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