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Metachronal waves for deterministic switching two-state oscillators with hydrodynamic interaction
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We employ a model system, calledrowers, as a generic physical framework to define the problem of the
coordinated motion of cilia~the metachronal wave! as a far from equilibrium process. Rowers are active
~two-state! oscillators in a low Reynolds number fluid, and interact solely through the forces of hydrodynamic
origin. In this work, we consider the case of fully deterministic dynamics, find analytical solutions of the
equation of motion in the long-wavelength~continuum! limit, and investigate numerically the short-wavelength
limit. We prove the existence of metachronal waves below a characteristic wavelength. Such waves are
unstable and become stable only if the sign of the coupling is reversed. We also find that with normal
hydrodynamic interaction, the metachronal pattern has the form of stable trains of traveling wave packets
sustained by the onset of anti-coordinated beating of consecutive rowers.
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I. INTRODUCTION

Cilia are hairlike extroflections of the cell membran
found in a variety of species from protists to humans, wh
contain active elements~molecular motors, filaments! acting
as an internal drive@1#. Because of their size and typica
velocities, the motion of cilia is in the low Reynolds numb
regime. Ciliary motion can be divided into two stages, cal
powerandrecoverystrokes. The difference between the tw
is that in the power stroke a higher portion of the surface
the cilium pushes against the fluid compared to the recov
stroke so that, as in the breast stroke of human swimm
the two effective viscous drags are different, and the filam
is able to propel the fluid@2–4#. Cilia normally appear in
arrays, and show coordinated wavelike motion, referred to
metachronal wave. The behavior of the metachronal wave
thought to be strictly linked to the hydrodynamic interactio
between cilia@5,6,8,7#. The question of how these collectiv
motions are generated, from the interplay between the in
nal active degrees of freedom and the external interactio
still open. The scope of this work is to investigate this pro
lem, using a simple deterministic model containing very f
parameters, consistent with experimental observations
previous more detailed modeling, which can be easily sim
lated and solved analytically in the limit of large wav
lengths.

Modeling of cilia @9–11# normally requires including the
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infinite degrees of freedom of an inextensible linelike obje
its bending elasticity, and its interaction with the fluid~slen-
der body hydrodynamics!, plus an active force, which can b
imposed based on physical observations or treated sta
from the ‘‘microscopic’’ internal active degrees of freedo
@12,13#. The model we present here~Sec. II! is extremely
simplified and economic in degrees of freedom. It is intend
to be treatable analytically. The cilia are represented by p
particles, two-state active oscillators which we callrowers.
The active force is inspired by the switch mechanism int
duced by Gueron and Levit-Gurevich@6#. Planar or linear
arrays of interacting rowers are considered. In a previ
work, we used the same model to study the role of no
@14#, proving that if the switch mechanism of single rowe
is purely stochastic the hydrodynamic interaction genera
metachronal waves which are statistically frustrated by
presence of random fluctuations, but can be stabilized by
presence of a short ranged coupling of the internal states
example of chemical origin. An alternative scenario pr
posed by us was that the presence of a coupling between
position and transition frequencies of the single rower wo
lead to wavelike solutions. In this work, we would like t
pursue this second possibility, in the limiting case where
dynamics for the switch is governed deterministically by t
configuration of the rower, as in the geometric switch
Gueron and Levit-Gurevich.

After an introduction of the model~Sec. II!, we devote the
main body of the paper~Sec. III! to the onset of metachrona
coordination. The discussion is divided into two parts. In t
first, we discuss an analytical solution of the continuum lim
of our model equation, which enables us to look for the on
of wavelike patterns with large wavelengths. In the seco
part, we look at the short wavelengths through numeri
simulations. As we will show, rowers with a determinist
configurational switch interacting hydrodynamically se
©2003 The American Physical Society08-1
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organize in patterns in which nearest neighbor particles b
in antiphase, and propagate trains of wave packets with t
cal wavelength of a few particles. Only with an effective
attractive interaction do long-wavelength wavelike solutio
appear.

II. THE MODEL: ROWERS AND EVOLUTION OF THE
INTERNAL STATE

In the model we adopt, the movement of a single cilium
reduced to that of a low Reynolds number rower that ma
mizes the effective drag in its active phase~power stroke!
and minimizes it in the passive, recovery stroke. More p
cisely, a rower is described by two degrees of freedom
which the first,f, is translational and continuous and repr
sents a~dimensionless! displacement from a reference pos
tion, rescaled with the characteristic amplitude of ciliary m
tion in the system of interest~Fig. 1!. It can be thought of as
the displacement of the center of mass of the filament fr
an equilibrium position. The second,s561, is discrete and
labels the internal state of the object, active or passive.
rowing direction is fixed, while the orientation can in gene
be left open, to approach the problem of symmetry break
in the generation of fluid flow@14#. The two states carry
different effective dragsgs511es ~with e.0) to the fluid,
corresponding to different surface impacts of the rower~dif-
ferent shapes of the filament! in the two phases, togethe
with different potentials~free energy landscapes! V( f ,s),
that generically describe different active or relaxation forc
felt by the cilium. This is the implementation of the so-call
scallop theorem@3# at this crude level of description, an
makes it possible for a rower to generate a net flow in
fluid. There is no interaction between rowers other than
force propagated by the presence of the fluid. This forc
modeled by the Oseen tensor for low Reynolds num
flows, appropriate in the case of cilia@3#. The array of cilia is
modeled as a linear or planar lattice of rowers labeled by
index n, and the configurations are specified byf n ,sn .

This approach to the system contains a radical simplifi
tion in the degrees of freedom of the object, a string w
infinite degrees of freedom, and of the active drive, gen
ated by the collective behavior of many molecular moto
This reduction enables us to carry an analytical study. At
level of description, the substitution of cilia with point pa
ticles does not change qualitatively the interaction indu
by the fluid. However, it is a more delicate issue to redu

FIG. 1. Cilia and rowers.
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the collective motion of molecular motors to a single d
namic variable. We choose to maintain this variable discr
justified by the experimental observation that the motion o
cilium is divided into two distinct phases and by previou
more detailed modeling that suggested this picture@6#.

The evolution of a rower internal state can be mode
generically as a stochastic process@14#, defined by the tran-
sition frequencies between states. Here we analyze a limi
case where the transition frequencies depend singularly
the configuration in a way that reduces the dynamics t
deterministic one. Essentially, a rower contains a switch t
alters instantaneously its internal state when a particular l
configuration is reached. The dynamics of the internal swi
is entirely local, in the sense that there is no interaction
chemical origin between the nearby rowers. With the
choices, the evolution ofsn may be represented by the fo
lowing equation containing a Diracd distribution:

]sn~ t !

]t
522sgn@ f n~ t !#Ud fn

dt Ud„f n~ t !2ssn~ t !…, ~1!

where6s are the switch points in correspondence of whi
the discrete internal state is inverted. These parameters
the amplitude of oscillation of a single particle and determ
its window of motion relatively to the driving potentials o
the two states~Fig. 2!.

Let us now turn to the evolution of the rower displac
ment and the hydrodynamics. Considering the fact that
overdamped motion follows the maximum slope toward
minimum free energy and that we consider no metastabi
there are generically two possible qualitative choices for
local conformation of the potentials in the two internal stat
These can be linear, provided the system is far from a m
mum, or quadratic if it is close. Therefore, rescaling all t
constants that are not essential to our discussion~Stokes co-
efficient, prefactors!, we write

FIG. 2. PotentialV( f ,s) for ks50 (1) and ks51 ~s!. The
dotted lines indicates521, the solid liness51. The dimension-
less quantityf represents the displacement of the center of mas
the cilium from its equilibrium position.
8-2
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V~ f ,s!5
1

2ks
~ks f 2s!22

1

2ks
,

where the parameterksP@0,1# determines the shape of th
potential~Fig. 2!. For consistency reasons, heres,1.

Thermodynamically, we have the following.
~1! If the switch is close to a minimum of the energ

ks51 and we take a quadratic potential, the rower has t
to dissipate completely its excess energy to the environm
before it reaches the switch. The dynamics is a cyclical r
etition of such relaxation processes.

~2! If the switch is far from a minimum energy configu
ration,ks→0 and the potential is linear. The switching pr
cess is faster than the thermalization time of the rower, wh
does not have time to dissipate all its energy. In this case
the switch the rower must undergo a collisionlike proce
which conserves the dissipation rate and the magnitud
the macroscopic velocity.

The considerations above refer generically to the ac
mechanism of model rowers, but leave aside the link w
real cilia. If one wants to give this drive a microscopic inte
pretation, it has to be in terms of collective motions of t
internal motors and elastic degrees of freedom of the ciliu
For example, in the linear potential scenario one can imag
that motors attach/detach slowly generating a constant fo
while in the nonlinear one they attach simultaneously, giv
the cilium a well-defined minimum energy curvature, a
they detach collectively after reaching it. In what follows, w
will set ks5k for simplicity.

The equation of motion for the rowers has to contain
hydrodynamic interaction. We think of rowers as sources
the velocity field and not as boundary conditions, whi
means introducing a~nondimensional! coupling constanta
between the fluid and the rowers as a substitute for the g
metric constraints.a is proportional to the Reynolds numbe
or to the inverse of the kinematic viscosity. To avoid co
plications, we do not take into account additional bound
conditions, such as walls. As the system is in a low Reyno
and Strouhal number regime@15#, it is possible to use the
regularized Oseen tensor@16# to eliminate the velocity field
and obtain an evolution equation for the sole rowers deg
of freedom@14#:

d fn~ t !

dt
5@11esn~ t !#

]@2V„f n~ t !,sn~ t !…#

] f n

1a (
mÞn

V@n,m#
]@2V„f m~ t !,sm~ t !…#

] f m
, ~2!

wheree is the parameter that represents the difference
tween the effective viscous drags in the two states
V@n,m#5(1/r nm) x̂x̂(I 1 r̂nmr̂nm) is the Oseen tensor pro
jected on the beating directionx̂ of the rowers. Strictly
speaking,V@n,m# depends onf n, f m . However, to ease
things in an analytical calculation, we approximated it with
quantity that depends only on the relative distance of
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lattice sites, assuming that the oscillations are small co
pared to this distance. Most of our simulations, though, w
carried with the fullV.

III. METACHRONAL COORDINATION

The scope of this section is to establish whether hydro
namic interactions are sufficient to rephase the rowers in
sence of a more direct coupling of chemical or mechan
origin. The oscillatory motion of a single rower in an array
guaranteed by the structure of its equation of motion. A me
field description of the array can be carried out consider
the overall effect of the velocity field generated on one row
by all the others. This procedure is outlined in Appendix
and leads to the main result that a collection of rowers
generate a macroscopic flow ifeÞ0, and that, provided
there is no intrinsic orientation in the beating mechanis
symmetry will be broken. However, in a description th
goes beyond the mean field, nothing can be said about
beating time, which can in general vary with the dynami
so that the question can be restated as whether this variab
in the beating time is stabilized or disrupted by the hydrod
namic interactions. The problem is hard to approach ana
cally due to the discontinuous nature of the switchs and the
nonlinearities. However, the continuous limit of the mod
which describes the long-wavelength behavior of the syst
can be approached analytically. The results obtained in
way can then be compared with the numerical study of
discrete case.

From the point of view of solving the equation of motio
one has to investigate the following.

~1! The existence of wavelike solutions. We defin
metachronal wave motions of the kindf n(t)5 f (t6txn), and
we define ‘‘simple’’ metachronal waves as the ones for wh
f ~and thuss) is a periodic function.

~2! The stability and attractivity properties of these so
tions.

~3! Their statistical weight in a macroscopic description
the system on large time scales. As one cannot establia
priori its initial conditions, the metachronal solutions will b
significant if the phase space volume of the initial conditio
they attract is nonzero, and the relaxation time scales do
exceed a cutoff defined by the lifetime of the system.

In what follows, we will be mainly concerned with th
first two points. The third point will be approached, in ge
eral, numerically for systems of a few rowers~short wave-
lengths!.

A. Metachronal pattern in the large wavelength limit:
Continuous model

We will show that in the continuum limit of equation o
motion ~2!, it is possible to find simple metachronal wav
solutions and study their stability analytically. We can ta
the continuous limit analyzing selectively metachronal so
tions whose wavelength is large compared to the spac
between rowers. Thenf n(t)5 f (xn ,t) becomes the continu
ous field f (x,t) and we can rewrite the hydrodynamic inte
action tensorV@n,m# as (2¹21q2)21, where we incorpo-
8-3
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LAGOMARSINO, JONA, AND BASSETTI PHYSICAL REVIEW E68, 021908 ~2003!
rate also the possibility of screening with inverse screen
length q. With one inversion of this operator, the evolutio
equation~2! for the continuousf can be written as

~q22¹2!F] f

]t
1~11es!~k f2s!G52a~k f2s!. ~3!

The Laplacian in the above expression is one dimensio
along the fixed direction of beatingx̂. We look for planar
metachronal wave solutions with the ansatzf 5 f (t2tx), so
that we can restrict ourselves to a (111)-dimensional prob-
lem. The transverse hydrodynamic interactions are irrelev
as the rowers are constrained to beat in one dimension,
the anisotropic terms can be absorbed in the prefactor of
interaction tensor. Callingy5t2tx, we can assume, withou
loss of generality, thaty50 is the coordinate of a wave fron
where the switchs has a jump. This translates into the co
dition

s5u~2y!2u~y!,

whereu is the Heaviside step function. The local displac
mentf can be decomposed into the sum of power stroke
recovery stroke parts,f 1u(2y)1 f 2u(y), and this implies
that

s f 5 f 1u~2y!2 f 2u~y!.

With this procedure, one obtains two linear third-order d
ferential equations forf 2 and f 1 , together with four joining
conditions for f 6 and their derivatives in corresponden
with the jumps ofs. Metachronal solutions can be con
structed starting from the initial conditiony(0)50 and gen-
erating a succession of wave-front coordina
y(1),y(2), . . . ,y(n), imposing the joining conditions above o
the solutions of the third-order differential equations forf 6 .
The iteration of this process, starting from the initial con
tions for f 6 and its first and second derivatives, or equiv
lently on the vector of the~two at the most! independent
arbitrary constants (A6 ,B6) of the solution of the differen-
tial equations, generates a flux in phase space, describe
an affine transformation~Fig. 3!. The existence of a fixed
point of the succession (A6

(n) ,B6
(n)) and its attractive proper

ties determine the nature and stability of the construc
metachronal wave. At every iteration, they(n) must satisfy
the relationf (y(n))56s. Note that despite the fact that ev
ery step involves linear operations, a strong nonlinearity
introduced by the inversion fory(n) of the solutions of the
differential equations. It is also important to stress that
solutions constructed in this way are, in general, not p
odic, and may have a domain of existence which is boun
in y, as after a number of iterations it could be impossible
invert for y(n). More details on these calculations for th
exemplifying casek51,e50 are reported in Appendix B.

Our results can be summarized as follows. We find th
from the point of view of the existence and stability
metachronal solutions,e plays no qualitative role, so that th
problems of flow generation and synchronization can
separated. For this reason, the discussion is independene
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and can be simplified by restricting to the casee50. A nec-
essary condition to findy(n) is that s,1, which gives a good
consistency test.

~1! For quadratic potentials (k.0) the, qualitatively rel-
evant parameter isp5(q1a)/t2. Fixing s, there is a critical
value pc such that forp.pc there exists no solution. This
sets an upper critical wavelengthlc for the metachronal
waves. For 0,p,pc , a fixed point exists, and the stabilit
analysis gives a marginally stable saddle point in the pla
of coefficients (A6 ,B6). In other words, there is one line~a
region of zero measure! of stability in this plane, with run-
away hyperbolic trajectories around it. We report this case
Fig. 4 as an example. Finally, forp,0 the wavelike solu-
tions are always stable. However, this last condition impl
p,0, therefore an effective ‘‘attractivity’’ of the hydrody
namic interactions. We will discuss below two cases t
could lead to this situation.

~2! In the casek50 ~linear potentials!, the solution al-
ways exists. Stability analysis gives solutions that are alw
unstable~two eigenvalues.1) for p.0 and stable forp
,0.

In both cases, we can conclude that metachronal solut
at long wavelengths are unstable unlessp,0, and the inter-
action becomes attractive. We would like to spend a f
words on the possible physical meaning of this change
sign, with an effectively attractive interaction. One first co
sideration is that interaction between colloidal objects can
more complicated than how we represent it, in the prese
of hydrodynamic effects or charge. For example, it has b
speculated that the presence of a wall in combination wit
surface charge, all neglected in our model, leads to ef
tively attractive potentials between colloids of like charg
@19#. Lubrication forces form another possibility, provide

FIG. 3. Analytical solution of the continuum equation~3! com-
puted for the cases50.8, p50.01, k51. The fixed point values of
the parameters in this case areA6520.435,B6521.456. All
quantities are dimensionless. The abscissay5t2tx represents the
wave front. It is rescaled to the characteristic beating time of
single oscillator~see Appendix A!. 6s are the switching points,p
is—essentially—the Reynolds number andk is the nonlinearity in-
dex of the potential~see text!. A andB are the coefficients used in
writing the wave functionf (y); the subscripts6 refer to consecu-
tive switches~see Appendix B!.
8-4
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METACHRONAL WAVES FOR DETERMINISTIC . . . PHYSICAL REVIEW E 68, 021908 ~2003!
that cilia are able to get sufficiently close to each other.
rowers, this last condition is contrary to the assumption
small oscillations in the theoretical calculation but can
tested through simulations with the full Oseen tensor. Co
ing back to the more orthodox casep.0, the results above
show that in the continuous limit, simple metachronal wav
~with nearest neighbor rowers in phase! exist for all wave-
lengths~below a characteristic one, forkÞ0), but they are
~marginally for kÞ0) unstable. These results are not su
cient to establish, in general, the statistical behavior
metachronal waves, as the hypotheses adopted here re
the analysis to a particular class of solutions and the lo
region of the phase space that surrounds them. For negatp
only we can conclude that wavelike solutions attract all
initial conditions. In the other cases, where the solutions
not attractive, we have to look for other basins of attractio

FIG. 4. Stability analysis fors50.3, p50.05, k51. The fixed
point values of the parameters areA6560.337,B6560.865. The
fixed point is marked with a black square, and the lines with arro
indicate the direction of evolution of different initial condition
showing that the fixed point is marginally stable. The trajector
are obtained by iterating the transformation on (A6 ,B6) starting
from different initial conditions. The lines reported are Bezier int
polations of these~discrete! transformations.
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in the phase space. One possibility is that these lie in
shorter-wavelength region, which is overlooked by the co
tinuous model. This motivates the numerical analysis of
following sections.

B. Numerical simulations with many rowers

A confirmation of these results, and more insight on t
behavior of the system, comes from numerical simulations
linear and two-dimensional arrays of many~50–250! rowers.
These were run starting from random initial conditions, w
nearest neighbor Oseen-like interactions, the simplified in
action tensor which depends on the lattice distance and
full V@n,m#, robustly showing the same phenomenology
all cases. In particular, for linear arrays withk.0, we have
the following.

~1! For p.0, the relaxed solutions look like trains o
traveling wave packets where nearby rowers show antico
dinated motion. In the patterns observed in the simulatio
the packets have typically a characteristic length of the or
of ten particles. Their traveling direction coincides almo
always with the beating direction of single rowers.

~2! For p,0 long-wavelength traveling solutions appea
These always have a wavelength that is exactly the siz
the array. For every solution of this kind traveling in on
direction, there is another one in the opposite one, leadin
mirror symmetric standing waves. The same solutions
found if a is kept positive, and a nearest neighbor attract
interaction is added.

This is exemplified in Fig. 5. For linear arrays withk
50, wavelike solutions appear only forp,0. Two-
dimensional arrays show the same qualitative behavior. T
makes the wave patterns propagate in directions that are
ferent from the beating direction of the rowers~nonsimplec-
tic, in the language of metachronal waves!.

We can give a heuristic argument based on the sw
mechanism to account for this antiphase coordination. Le
consider three consecutive rowersX,Y,Z, and assume tha
they are in phase. Immediately afterX reaches the11
switch, it feels a strong negative force due to the change
the potential, which is propagated mainly toY and much less

s

s

-

istance

ined by

e

FIG. 5. Metachronal solutions from numerical simulations of linear arrays of rowers interacting with the full Oseen tensor. The d
between successive rowers is 2 in our rescaled units ande50.25. ~a! and ~b!: casep.0. a50.4,k51,150 rowers. In~a!, a part of the
configurationf n as a function of the rower index is shown. The dashed line shows the actual configuration, while the solid one, obta
connecting the points relative to odd rowers, outlines the shape of the wave packet.~b! represents the time evolutionf (t) of the 40th rower
of this array~time is rescaled to the characteristic beating time of the single oscillator!. ~c!: casep,0. a520.1,k51,200 rowers. The
configurationf n shows a long-wavelength metachronal wave. The part of the configuration fori .100 is mirror symmetric, due to the sam
pattern traveling in the opposite direction.
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FIG. 6. ~Color online! Poincare´ map for the casek50, three rowers, periodic boundary conditions.f 1 and f 3 are dimensionless quantitie
which represent the positions of rowers 1 and 3 when rower 1 reaches the switch positions. Here, e50.02 ands50.9. The allowed
configurations are confined in the square region@2s,s#3@2s,s#. However, to increase clarity, the figures were divided into four regio
corresponding to the different values of the two switches, which were ‘‘folded outside,’’ so that the axes correspond to the actual
ration of the rowers after a mirror reflection dependent on the state of the switches.~a! a50.1. ~b! a50.01.
e

t
e

f t
hi
a

or
y
u

in
e
a

n
ith
te
o

av
u
id
n
ow
a
e

tio
a
n
a
te

are
ace
n-

t of
ses

ctors

at-
mes

is-
ive
de-

the
ues
ri-
g

tate
eric
y-
si-
is-

the
s

o-
n
ng
a-
of
ort
to Z. ProvidedY was going toward the same switch, it will b
slowed down, and therefore de-phased with respect toX. Let
us imagine now thatX,Y,Z are in antiphase andA reaches
the11 switch. Now the force felt byY ~and much less byZ)
will be driving it toward the21 switch, reinforcing the
dephasing. As a result, the antiphase beating betweenX and
Y is more stable than the coordinated motion. According
this argument, this will be the case in all the instances wh
the influence of nearest neighbors is stronger than that o
far away ones. More formally, one can find a reason for t
behavior in the analytical solution of the continuum equ
tion. Configurations where rowers, interacting with the n
mal Oseen tensor, have opposite phase are overlooked b
continuum limit. However, roughly speaking, these config
rations lead effectively to a change of sign ofa in the con-
tinuum limit equation, as one can easily see by impos
f even52 f odd in Eq. ~2!. Therefore, one can think that th
stable waves found forp,0 in the continuum model have
trace of this antiphase behavior.

C. Stability of the metachronal wave at short wavelengths

To analyze the system at shorter wavelengths, we ran
merical simulations of linear arrays of a few rowers w
periodic boundary conditions, choosing to truncate the in
action to nearest neighbors. We interpret the boundary c
dition as a constraint on the wavelength of the resulting w
patterns. For up to four rowers, we analyzed the system
ing Poincare´ maps. This study leads to more general cons
erations on the statistical weight of metachronal solutio
The maps are obtained by graphing the positions of two r
ers when a reference one reaches the switch over m
cycles of the motion and for different initial conditions. If th
resulting graph is, or converges to, a single point, the mo
is coordinated. If it is a closed orbit, the coordination is qu
siperiodic, which means that the motion, in general, does
look like a traveling wave. Finally, if the resulting graph is
random scatter plot, the motion is chaotic. Indeed, the sys
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can be either chaotic or quasiperiodic if the potentials
linear (k50), as can be seen in Fig. 6. The phase sp
volume of the quasiperiodic region delimited by the conce
tric loops is, therefore, a measure of the statistical weigh
quasiperiodic solutions. The volume of this region decrea
with increasinga. The casekÞ0 is somewhat different.
Here, there is no chaos, and the stable tori become attra
to a fixed point of the parameter space@Fig. 7~a!#. This
means, in principle, that all the initial conditions lead to p
tern formation. Therefore, the relevant parameter beco
the relaxation time. This diverges ask→0 as a power law
with exponent b.0.85 and asa→0 with exponent c
.0.74. The curvature of the potential, which as we d
cussed has to do with the activity of the microscopic act
degrees of freedom, seems therefore to be important in
termining the organization properties of the system. On
other hand, the phenomenology observed for different val
of a is qualitatively consistent what what observed expe
mentally for the arrays of cilia beating in fluids with varyin
viscosity @7,8#.

IV. OVERVIEW AND CONCLUSIONS

We have presented a simple model system of two-s
low Reynolds number oscillators called rowers as a gen
framework for the problem of cooperation of cilia. The d
namics adopted in this work, specified by setting the tran
tion rates between the two potentials, is entirely determin
tic, determined by a switch mechanism coupled to
configuration. We solved analytically for wavelike solution
the continuum, long-wavelength limit of the equation of m
tion for an array of rowers with hydrodynamic interactio
and we analyzed the stability of the solutions, confronti
with the results from numerical simulations. Finally, we an
lyzed through Poincare´ maps the phase space dynamics
systems of a few rowers, to study their behavior at sh
wavelengths.
8-6
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Our most important result is that metachronal patterns
ist at all wavelengths~below a characteristic one, fork
Þ0), but long-wavelength solutions are~marginally for k
Þ0) unstable. The stable patterns have the form of cons
tive wave packets where nearest neighbor oscillators ar
antiphase, propagated with constant speed, with a chara
istic length of a few rowers. We showed that the statisti
weight of these solutions can be determined numerically
imposing an upper cutoff on the wavelength of the patte
Only in the presence of a reversed coupling constant
long-wavelength metachronal solutions be stable. We p
posed two possible physical reasons for this reversal in s
Deterministic switching rowers, as two-state oscillato
show a rich and an unusual phenomenology, of which
could explore a number of aspects. Their behavior is in m
ways opposite to our usual notion of oscillations, start
from the fact that no normal modes can be defined, but
oscillators self-tune to a chosen frequency determined by
characteristic relaxation times in the two states, much a
the systems close to a Hopf bifurcation@13#.

Comparing the behavior of our abstract entities with t
of real or model cilia, the first puzzling question seems to
in the antiphase motion. As discussed, a solution of
could lie in a short ranged interaction with a different orig
Lubrication forces form one good candidate for this, as r
cilia can be really close to each other. Also, a short ran
synchronization between the switches of chemical ori
could lead to the same result, consistently with the scen

FIG. 7. ~Color online! ~a! Poincare´ maps forkÞ0, three rowers,
e50.02. Left:a50.01 attracting trajectories for different values
k. n, k50.15; s, k50.2; h, k50.3; L, k50.4. Right: different
initial conditions fork51. ~b! Log-log plot of the~rescaled! relax-
ation time as a function ofk for a50.01 (h) anda50.1 ~s!. The
power-law fits~solid lines! yield an exponent of 0.85.~c! Relax-
ation time as a function ofa for k50.3. The power-law fit gives the
exponent 0.74.
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proposed in our previous work. The relevant parameters
our discussion are the stiffness of the potentialk and the
hydrodynamic interaction coupling strengtha. The first is
related to the internal active degrees of freedom, which
hard to access experimentally, while the second can be u
for a qualitative comparison of our results with experime
where the arrays of cilia are observed beating in fluids w
varying viscosity@7,8#. One other question is the relatio
with more detailed models of cilia and their internal drive,
particular with the geometric switch model of Gueron a
co-workers@5,6#. Rowers, with their few degrees of freedom
constitute a system much more under control than filame
to test. We can conclude that generically simple hydro
namic interaction does not synchronize but antisynchron
nearest neighbor rowers, so that, if filamentous objects ar
be synchronized by a similar mechanism, an extra~to be
found! ingredient is needed.
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APPENDIX A: MEAN FIELD APPROACH, SYMMETRY
BREAKING

It is possible to estimate the magnitude of the charac
istic beating times and the macroscopic speed generate
the fluid without having to solve explicitly the equations
motion, using simple self-consistency considerations@14#.
This is done by writing the equations of motion~1! and ~2!
for a single rower in a constant external effective veloc
field v along its beating direction and assuming that t
velocity is generated by the effect of the surrounding rowe
Equation~2! then looks then like

d f0~ t !

dt
5@11es0~ t !#

]@2V„f 0~ t !,s0~ t !…#

] f 0
1v,

where we have labeled conventionally with the index 0
rower around which we do the self-consistent calculation
is then straightforward to calculate the beating timest6 for
this single rower, defined as the times required to go fro
2s to 1s and back, respectively:

t15@k~11e!#21lnF ~11e!~11ks!1v
~11e!~12ks!1vG ,

t25@k~12e!#21lnF ~12e!~12ks!2v
~12e!~11ks!2vG .

These quantities can be used to determine self-consiste
the absolute value of the ‘‘macroscopic’’ fluid velocityv,
taking into account the average force exerted by the sin
rower on the fluid in one cycle,

vsc5Fa (
nÞ0

V0,nG1

TE0

T

2
]V~ f ,s!

] f
dt,

where the total periodT5t11t2 depends onv. Therefore,
8-7
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vsc52
1

T Fa (
nÞ0

V0,nGFvscS 11e1
t2

12e D14esG .
~A1!

In this expression, the summed hydrodynamic propag
simply plays the role of a multiplicative constant, ands de-
termines the self-consistent value for the velocity~see Fig.
8!. For e50, vsc50, and the scallop theorem is found aga
in the description of a collection of rowers. The same ar
ment yielding a nonzero self-consistent velocity can be
tended to the case of one—or a collection of—rower wh
rowing direction is not fixed. This is obtained by taking r
flection symmetric potentialsV( f ,s)5V(2 f ,s), one of
which is with a single minimum forf 50, the other with a
double well. A thermal noise needs to be added for the pr
lem to be well posed. Rowers are able to break sponta
ously the symmetry to generate a flow in the fluid@14#. For
real cilia, the problem of symmetry breaking can be relev
in the context of generation of left-right asymmetry throu
nodal flow in vertebrate embryos@17#.

APPENDIX B: EXAMPLE OF EXPLICIT SOLUTION OF
THE CONTINUOUS MODEL AND ITS STABILITY

We will solve Eq. ~3! analytically with the ansatzf
5 f (x2tt) on the solution. For simplicity, we can restri
ourselves to the casek51, q50, e50, as the general cas
carries no further conceptual complication. Callingy5x
2tt, the equation reads

2t2~ f-1 f 9!1a~ f 2s!1t2s950, ~B1!

where prime indicates derivatives with respect toy. For a
transition ofs from 1 to 21 at the wave fronty50, the
right joining conditions are, as already discussed,

s5u~2y!2u~y!, ~B2!

f 5 f 1u~2y!1 f 2u~y!, ~B3!

s f 5 f 1u~2y!2 f 2u~y!, ~B4!

FIG. 8. Self-consistent velocity calculation. The right-hand s
~solid line! and the left hand side~dashed line! of Eq. ~A1! are
plotted as a function ofv in the graph above. The intersectio
between the two lines yieldsvsc. The values of the parameters fo
the curves shown arek50.8, e50.25,s50.8, and a(nÞ0V0,n

50.2. With these values,vsc.0.365 in nondimensional units.
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whereu is the Heaviside step function andf 65 f 6(y). Ana-
log expressions hold for the transition21→1. The decom-
positions above generate two linear ordinary differen
equations forf 6 :

f 6-1 f 69 2p f657p ~B5!

with p5a/t2. Moreover, the same conditions~B2!, ~B3!,
~B4!, and their derivatives can be substituted in Eq.~B1!,
obtaining an expression containing terms inu(6y), d(y),
and its derivatives. Equating all the terms to zero, one
tains three joining conditions. That is,

~ f 12 f 2!uswitch50, ~B6!

~ f 18 2 f 28 !uswitch5
2

3
, ~B7!

~ f 19 2 f 29 !uswitch52
4

9
. ~B8!

Here, and more generally in the casee50, the two equations
~B5! are the same with the identification2 f 25 f 1 . The
solution of Eq.~B5! is easily obtained;f 6561 is always a
particular solution, and one has to solve the characteri
equationz31z25p. This admits three real solutions for
,p, p̄, and one forp,0 andp. p̄, p̄54/27. We will ana-
lyze in detail here the case with three solutions (2z1 ,
2z2 ,z3), with z1 ,z2 ,z3.0 . In this situation,

f 6~y!56~11A6e2z1y1B6e2z2y1C6ez3y!.

The constantC6 can be eliminated by using the conditio
f 6(0)57s, meaning that after the first jump the rower
located at the switch. The next step is to evolve this solut
up to a certainy6 where the next switching event will tak
place, imposing that

f 6~y6!56s. ~B9!

y6 is obtained by inverting this last expression and has
satisfy the joining conditions~B8! for the next ‘‘piece.’’ For
example, supposing we start from states51,

f 18 ~y1!2 f 28 ~0!5
2

3
, f 19 ~y1!2 f 29 ~0!52

4

9
.

This gives a linear transformation (A1 ,B1)→(A2 ,B2). A
complete solution can be constructed by iterating this pro
dure. This solution is, in general, nonperiodic, asy6 may
vary at every step and also cease to exist. The equations
determiney1

(n) andy2
(n) at thenth step can be written as

A6
(n)H (1,3)~y6

(n)!1B6
(n)H (2,3)~y6

(n)!2~11s!E3~y6
(n)!1~12s!

50, ~B10!

where we used the notation

H ( i ,3)~y!5e2ziy2e2z3y, i 51,2,
8-8
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Ei~y!5e2ziy, i 51,2, E3~y!5e2z3y.

The joining conditions for stepn are

A6
(n11)5E1~y7

(n)!A7
(n)1w1 , ~B11!

B6
(n11)5E2~y7

(n)!B7
(n)1w2 ,

where w1 ,w2 are rational functions of the solution
z1 ,z2 ,z3.

A simple ~periodic! metachronal solution exists when th
transformation has a fixed point, which can be imposed
setting the equality betweenA1

(n11) and A1
(n) . This wave is

characterized by a uniquey15y25 ȳ solution of

w1

11E1~ ȳ!
H (1,3)~ ȳ!1

w2

11E2~ ȳ!
H (2,3)~ ȳ!2~11s!E3~ ȳ!

1~12s!50,

and by coefficientsA25A1[Ā andB25B1[B̄ given by
d.

ci.

l-

02190
y

Ā5
w1

11e2z1ȳ
,

B̄5
w2

11e2z2ȳ
.

The equation forȳ admits solution a only ifs,1, and, for
any given value ofs, if p is lower than the critical valuepc

, p̄ introduced in the paper, which can be found numerica
This sets a maximal wavelengthlc for the metachronal
wave. The stability of the solution can be evaluated by l
earizing the flow, starting from the point (Ā1dA,B̄1dB) in
parameter space, inverting Eq.~B10! for ȳ, and calculating
the total variation (dA,dB) from Eq.~B11!. In this case, this
yields one eigenvalue lower than 1 and one higher, co
sponding to a marginally stable fixed point. The proced
outlined in this appendix can be carried out more in gene
leading to the results discussed in the body of the paper
ur.
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